
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1

Research Question: How can a blur detection tool be effectively
developed using the Haar Cascade classifier, leveraging OpenCV,
NumPy and PyQt5 for efficient real-time image processing and user
interface implementation?

Author: Siddhant Ray

1202, Lilium, Vasant Oasis, Makwana Road, Marol, Andheri (E), Mumbai - 400059
---***---
Abstract - This research investigates the development of
a blur detection tool utilizing the Haar Cascade classifier,
a machine learning object detection method, implemented
with OpenCV, NumPy, and PyQt5 libraries. The Haar
Cascade classifier, a machine learning object detection
method, is usually employed for real-time face detection
activities. OpenCV is a robust library for computer vision
tasks which is used for image processing and camera
interfacing. NumPy library efficiently handles the numerical
operations on image data. PyQt5 provides a flexible
graphical user-interface for seamless interaction. The
methodology involves capturing live video frames from a
Logitech 720p webcam using OpenCV detecting faces within
these frames using the Haar Cascade classifier, and
subsequently analyzing the sharpness of detected faces to
determine blur levels. The Laplacian operator is applied to
compute the variance, serving as the primary metric for
blur detection. A high variance indicates a clear image,
while a low variance indicates blurriness. The PyQt5 library
entails several imports and enhances the usability of the tool
by displaying the real-time video feed, and overlaying
detection results, such as bounding boxes and update
messages. The integration of the PyQt5 library allows for an
interactive UI / UX design, enabling users to easily observe
the blur detection outcomes. This research demonstrates the
optimization and effective usage of these libraries to create
a real-time blur detection system. This study provides a
foundational framework for developing advanced image
processing tools with practical real-world applications.

Key Words: Haar Cascade Classifier, OpenCV, Numpy,
PyQt5, Operating System, Laplacian Variance, Blur
detection, graphical user interface libraries, ellipse,
bounding box, threshold, golden ratio

1.INTRODUCTION
In the realm of digital image and video processing,
detecting and mitigating image blur is crucial for
ensuring high-quality visual information. This
research explores the implications of a blur detection
tool using the Haar Cascade classifier, integrated
with OpenCV and NumPy for efficient image and
video analysis. Haar Cascade classifiers facilitate
rapid and precise face detection, acting as a medium

for subsequent blur analysis. By integrating the
Laplacian variance, the tool quantifies image
sharpness, thereby easily differentiating between
clear and blur images. The incorporation of PyQt5
enhances user interaction, providing accurate real-
time feedback and a responsive user interaction. This
study aims to enhance image quality across various
applications through blur detection.

2. LIBRARIES INCORPORATED AND THEIR
FUNCTIONS WITH RESPECT TO THE BLUR
DETECTION TOOL

 os - The ‘Operating System’ library is used

primarily for file path operations, such as
expanding the user’s home directory to save
captured photos

 cv2 - The ‘cv2’ library is a part of ‘OpenCV (Open
Source Computer Vision library)’ which is used
for computer vision in the form of video capture,
image processing, face detection, and drawing
bounding boxes and ellipses

 sys - The ‘sys’ library provides access to some
variables used or maintained by the interpreter
and to functions that interact strongly with the
interpreter

 numpy - The ‘numpy’ library is used for array
manipulation and mathematical operations in
the form of calculating face area and intersection
area

 PyQt5 - The ‘PyQt5’ library is a set of Python
bindings for Qt libraries, used to create and
manage graphical user interfaces (GUIs). Here,
‘QApplication’ manages the application’s
control flow and main settings, ‘QMainWindow’
creates the main window for the application,
‘QTimer’ periodically updates the frames,
‘QImage’ and ‘QPixmap’ are used to convert
(format conversion) OpenCV images into a
format that can be displayed in PyQt5 widgets.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 2

3. HAAR CASCADE CLASSIFIER
The Haar Cascade Classifier is a machine learning
computer-vision based approach introduced in 2001
by Intel Corporation (Gary Bradski and Adrian
Kaehler). It is particularly used in face detection via a
webcam, but it can be trained for other types of
object detection as well. This classifier uses a cascade
function to identify objects in an image based on
features. These features are derived from Haar
wavelets (simple rectangular patterns of different
pixel intensities).

4. WORKING PRINCIPLE OF HAAR CASCADE
CLASSIFIER
Below is the step by step methodology for the
working principle of Haar Cascade Classifier:

1) Integral Image Representation: This is a quick
way to calculate the sum of pixel values within a
rectangular region of an image which helps to
significantly speed up the computation of Haar
Cascade features. It is a unique kind of technology
where each pixel value is the cumulative sum of pixel
values in any rectangular subset of the image.
2) Haar Features: These are simple rectangular
features that can be calculated using the integral
image. These features are the key point in capturing
the difference in intensity between adjacent regions,
which is particularly useful for detecting edges and
changes in an image.
3) AdaBoost Training: Adaptive Boost Training is
used to select the most relevant features among a
large set and to train a cascade of classifiers. This
training process involves selecting a small number of
significant features from a large pool, which can be
used to classify differences between objects (faces)
and non-objects (background / interference). This
pool of weak classifiers are then combined to form a
strong classifier.
4) Cascade of Classifiers: The cascade architecture
is a series of increasingly complex classifiers to
quickly eliminate negative windows, while more
complex classifiers are used to ensure higher
accuracy in detection. Each stage of Haar Cascade
applies a series of Haar features to the input images
in the form of parameters. If the segment passes
through all these stages, only then is it considered to
contain the object of interest (face).

5. APPLICATION OF HAAR CASCADE CLASSIFIER
IN THE BLUR DETECTOR

Part of code: face_cascade =
cv2.CascadeClassifier(cv2.data.haarcascades +
'haarcascade_frontalface_default.xml')

Function: This is a constructor method which
initializes / loads the pre-trained Haar Cascade
classifier.

 ‘OpenCV’ is imported as ‘cv2’
 ‘CascadeClassifier’ is used for object detection
 ‘haarcascade_frontalface_default.xml’ is the

unique XML file containing the pre-trained
model and was incorporated as part of installing
Haar Cascade through the pip function

 cv2.data.haarcascades +
'haarcascade_frontalface_default.xml'
concantenates (joining two or more strings) the
directory path and XML file name to form the full
path to the pre-trained model. The ‘+’ operator is
used for the concatenation here

Part of Code: faces =
face_cascade.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=5, minSize=(30, 30))

Function:

 ‘gray’ is used to grayscale the image where the
face is to be detected

 ‘scaleFactor=1.1’ is a parameter specifying how
much the image size is reduced at each image
scale and helps in creating a scale pyramid

 ‘minNeighbors=5’ is a parameter that defines
how many neighbors each candidate rectangle
should have to retain it. A higher value results in
fewer detection but higher quality, hence we
have chosen a median value

 ‘minSize=(30, 30)’ sets the minimum possible
object size. Objects smaller than this size are
ignored and the function is not called if the
objects are smaller than this size

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 3

6. OPENCV LIBRARY
OpenCV (Open Source Computer Vision Library) is an
open source computer vision and machine learning
software library. OpenCV is used in a wide array of
real life activities such as image processing, video
processing, face detection, object detection, motion
tracking, so on and so forth. The syntax to install
OpenCV in Python is:

pip install opencv-python

For additional functionality such as support for non-
free algorithms or GUI support, to unlock more
features, one can install OpenCV with the syntax:

pip install opencv-contrib-python

7. COMMON OPENCV SYNTAXES AND THEIR
FUNCTIONS

 img = cv2.imread(‘image.jpg’): Reads an image
from a file

 img = cv2.imwrite(‘output.jpg’, img): Saves an
image to a specified file

 img = cv2.imshow(‘Window Name’, img):
Displays images

 cv2.waitKey(0): Waits for a key event
indefinitely

 cv2.destroyAllWindows(): Closes all OpenCV
windows

 gray = cv2.cvtColor(img,
cv2.COLOR_BGR2GRAY): Used for grayscaling,
changes the entire representation of an image
from colors to black and white

 resized_img = cv2.resize(img, (width, height)):
Resizes an image to specified dimensions

 cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255,
0), 2): Draws a rectangle on an image;
parameters are coordinates of the top-left
corner, bottom-right corner, color (in BGR
format) and thickness

 cv2.circle(img, (x, y), radius, (0, 255, 0), 2):
Draws a circle on an image; parameters include
the center, radius, color and thickness

 vid = cv2.VideoCapture(0): Captures a video
from a camera of video file; parameters contain
camera index or the filename

8. APPLICATION OF OPENCV IN BLUR DETECTION
TOOL

Part of Code: cv2.CascadeClassifier

Function: Used to initialize the Haar Cascade
classifier using the pre-trained model for frontal face
detection

Part of Code: cap = cv2.VideoCapture(0)

Function:

 Used to start the webcam; variable name is ‘cap’
 0 represents the default camera of the system
 ‘VideoCapture’ function is used to capture the

video from the webcam

Part of Code: frame_width = int(cap.get(3))
frame_height = int(cap.get(4))

Function:

 These retrieve the height & width of the video
frames captured from the webcam

 The ‘cap’ here was the variable used to define
the video capture in OpenCV

 cap.get(3) retrieves the width of video frames
 cap.get(4) retrieves the height of video frames
 The numbers of 3 and 4 are identified as

constants defined in OpenCV’s pre-trained
model for height and width respectively

 ‘CV_CAP_PROP_FRAME_WIDTH’ has the
identifier 3

 ‘CV_CAP_PROP_FRAME_HEIGHT’ has the
identifier 4

 Essentially, ‘cap.get(3)’ and ‘cap.get(4)’ are
short-cut ways of retrieving the frame’s height
and width respectively

Part of Code: golden_ratio = 1.618
oval_width = int(frame_width / golden_ratio)
oval_height = int(frame_height / golden_ratio)

Function:

 Defined a ‘golden-ratio’ to 1.618 which is the
most perfect size for an oval for an average
human head to fit inside the oval

 ‘oval_width = int(frame_width /
golden_ratio)’ divides the frame width by the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 4

golden ratio (1.618) to determine the width of
the oval

 oval_height = int(frame_height /
golden_ratio) divides the frame height by the
golden ratio to determine the height of the oval

 ‘int()’ function is used to typecast the result into
an integer since pixel dimensions are typically in
whole numbers

Part of Code: center_coordinates = (frame_width //
2, frame_height // 2)

Function:

 ‘center_coordinates’ is a tuple which is
immutable (cannot be modified)

 ‘frame_width//2’ uses integer division to find
the horizontal center of the frame (x-coordinate
of the center of the frame)

 ‘frame_height//2’ uses integer division to find
the vertical center of the frame (y-coordinate of
the center of the frame)

Part of Code: axes_length = (oval_width // 2,
oval_height // 2)

Function:

 ‘oval_width//2’ divides the oval width by 2 to
get the semi-major axis length

 ‘oval_height//2’ divides the oval height by 2 to
get the semi-minor axis length

 ‘axes-length’ tuple contains the lengths of semi-
major and semi-minor axes of the oval

Part of Code: ‘color = (255, 0, 0)
thickness = 2’

Function:

 ‘color = (255, 0, 0)’ sets the color of the oval to
blue. This follows the BGR format (Blue, Green
Red). Here, a high value of the blue component
increases the intensity of blue colour onto the
ellipse / oval. Since the red and green
component is 0, the color of the ellipse is purely
blue without any presence of the red and green
component. BGR format is followed by OpenCV

instead of RGB since BGR has been followed for a
very long time and it improves interoperability

 ‘thickness = 2’ sets the thickness of the oval’s
outline to 2 pixels

Demonstration of making of the ellipse

BLUE COLOR ELLIPSE AND OUTLINE THICKNESS 2 PX

Part of Code: def create_oval_mask(frame_shape,
center, axes):

Function:

 This line defines a function called
‘create_oval_mask’ that takes three parameters

 Parameter 1 is called ‘frame_shape’ which is the
expected shape of the video frame. It is typically
a tuple representing the dimensions of the frame
entailing the height, width, and channels of the
image in the frame

 Parameter 2 is called ‘center’ which is a tuple
representing the center coordinates (x,y) of the
oval. This tuple is immutable (cannot be
modified) and only accepts values generated by
the system

 Parameter 3 is called ‘axes’ which is a tuple
representing the lengths of the semi-major and
semi-minor axes of the oval. This tuple too is
immutable (cannot be modified) and only
accepts values generated by the system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 5

Part of Code: mask = np.zeros(frame_shape[:2],
dtype=np.uint8)

Function:

 This line is used to create an empty binary mask
 ‘np.zeros’ is a function from the ‘NumPy’ library

that creates a 1D array filled with zeros
 ‘frame_shape[:2]’ is used to slice the

‘frame_shape’ tuple to get the first two elements,
which are the height and width of the frame.
This ignores the image channel dimensions
(example: RGB) because the mask is a single-
channel gray-scaled image

 ‘d-type=np.uint8’ specifies the data type of the
array elements. The ‘np.uint8’ here refers to an
8-bit unsigned integer data type. ‘uint8’ here
stands for ‘unsigned 8-bit integer’. ‘Unsigned’
means the values have to be non-negative
(positive integers) from 0 to 255. The ‘8’ here
indicates it stores 8 bits (1 byte) of memory.
Essentially, ‘np.uint8’ stands for a positive 8 bit
unsigned integer data type. The advantages of
this are that it is memory efficient since it takes
up only 8 bits per channel making it suitable for
handling large images. Apart from this, this data
type is extremely compatible since most image
processing libraries and hardware expect image
data in this format

Part of Code: cv2.ellipse(mask, center, axes, 0, 0, 360,
255, -1)

Function:

 ‘cv2.ellipse’ is an OpenCV function that draws
an ellipse on an image

 ‘mask’ is the blank image created using
‘np.zeros’

 ‘center’ is a tuple (x,y) representing the center
coordinates of the ellipse

 ‘axes’ is a tuple representing the lengths of the
semi major and semi minor axes of the ellipse.
The lengths are halved the get the complete
width and height of the ellipse

 The first ‘0’ represents the angle of rotation of
the ellipse. A value of ‘0’ means there is no
rotation; the ellipse is aligned with the axes

 The ‘0’ and ‘360’ define the start and end angles
of the ellipse respectively. Since the start angle is
0 and the end angle is 360, a full ellipse is drawn

 ‘255’ here represents the color of the ellipse
which corresponds to white naturally and
corresponds to blue in a multi-channel image

 ‘-1’ here represents the thickness of the ellipse’s
outline. The value of ‘-1’ means the ellipse is
filled. If a positive value were provided, it would
specify the thickness of the ellipse’s border

Part of Code: return mask

Function:

 ‘return’ keyword: This keyword is used to exit a
function and return a value

 This line returns the ‘mask’ array, which
contains the drawn ellipse

 The function ‘create_oval_mask’ generates and
returns this mask, which can be used for further
image processing functions

9. CREATING A FUNCTION TO CHECK IF FACE IS IN
OVAL AND ITS EXPLANATION

Part of Code: def is_face_in_oval(face, oval_mask,
required_percentage=0.8):

Function:

 Here, the name of the function is
‘is_face_in_oval’ which is an immutable tuple

 The ‘face’ represents a part of the tuple
representing the coordinates of the top-left
corner (x,y), width (w) and height (h) of the
detected face

 The ‘oval_mask’ represents the formation of a
binary mask image (same size as the frame) with
an oval drawn on it

 The ‘required_percentage=0.8’ forms a
threshold of 80% / 0.8 representing the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 6

minimum percentage of the face that must be
inside the oval to consider it valid

Part of Code: x, y, w, h = face

Function:

 The purpose of this piece of code is to unpack
the ‘face’ tuple into individual variables

 The ‘x’ represents the x-coordinate of the top-
left coordinate of the face

 The ‘y’ represents the y-coordinate of the top-
left coordinate of the face

 The ‘w’ represents the width of the face
 The ‘h’ represents the height of the face

Part of Code: face_mask = np.zeros_like(oval_mask)

Function:

 The purpose of this piece of code is to create an
invisible blank binary mask of the same size as
‘oval_mask’

 The ‘face_mask’ is the variable which is defined
to the blank binary mask

 The ‘np.zeros_like(oval_mask)’ is a NumPy
function that creates a 1D array of zeros with the
same shape and type as the given array

 The created ‘face_mask’ will be a binary image
with all pixels initially set to zero

Part of Code: cv2.rectangle(face_mask, (x, y), (x + w,
y + h), 255, -1)

Function:

 This feature draws a rectangle (bounding box)
whenever a face is detected

 The ‘face_mask’ is the image on which to draw
the rectangle

 The ‘(x,y)’ is the top left corner of the rectangle
 The ‘(x+w, y+h)’ is the bottom right corner

which is found by adding the width and height of
the rectangle to the x-coordinate and y-
coordinate of the top left corner respectively

 The ‘255’ represents that the color of the
grayscale (255) is white

 The ‘-1’ represents the thickness of the rectangle
and means that the area of the rectangle will be
filled

Visual Demonstration of the bounding box when
a face is detected

Part of Code: intersection =
cv2.bitwise_and(oval_mask, face_mask)

Function:

 Performs a bit-wise AND (logic gates) operation
between the 2 masks. This operation keeps only
the pixels that are white (255) in both masks.
Given below is the Truth table for a bit-wise
AND operation

 The ‘cv2.bitwise_and’ contains two parameters:
‘oval_mask’ which is the first binary mask with
the oval and the ‘face_mask’ which is the second
binary mask with the face rectangle

 The ‘intersection’ mask will have white pixels
only in the area where the face rectangle
overlaps with the oval

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 7

Part of Code: intersection_area =
np.sum(intersection // 255)

Function:

 Calculates the area of intersection between the
face rectangle and oval in terms of number of
white pixels

 The ‘intersection // 255’ converts the
intersection mask into a binary mask to ensure
area calculations are simplified; AND, OR and
XOR operations can be carried out smoothly;
there is consistency in data representation

 The ‘np.sum’ sums up all the values to
determine the area of the intersection

Part of Code: return intersection_area >=
required_percentage * face_area

Function:

 Determines if the intersection area is at least the
required percentage of the face area

 The ‘required_percentage*face_area’
calculates the minimum required area of the face
that should be inside the oval

 The ‘intersection_area>=’ checks if the
intersection area exceeds or at least meets this
minimum required area

 The ‘return’ value is used here to give ‘True’ if
the intersection area is greater than or equal to
the required percentage 0.8 multiplied by the
face area and will return ‘False’ if the output is
otherwise (intersection area is lesser than the
required percentage 0.8 multiplied by the face
area)

10. PYQT5 LIBRARY

PyQt5 stands for Python Qt5 which is a set of Python
bindings for Qt libraries, mainly used for creating
GUIs. Qt is a powerful cross platform C++ library
used to develop graphical user interfaces (GUIs) and
multi-platform applications that run on various
software and hardware applications such as Linux

and Windows. PyQt5 is special since it aids cross-
platform compatibility, provides a rich set of widgets,
allows integration with Python, is up-to-date and
compatible with modern GUI developments, uses a
signal and slot mechanism for event handling making
it easier to manage user interactions and interface
components. Lastly, there is an extensive
documentation dataset and a large community
providing support and examples on how to
effectively use PyQt5.

11. COMPONENTS OF PYQT5 LIBRARY

 QtCore: Core non-GUI classes used by other
modules

 QtGui: Classes for window system integration,
event handling, 2D graphics, basic imaging, fonts
and text

 QtWidgets: Classes for creating desktop style
GUIs

 QtMultimedia: Classes for audio, video, radio
and camera functionality

 QtNetwork: Classes to make network
programming easier and more portable

 QtSql: Classes for database integration using
SQL

 QtSvg: Classes for displaying the contents of SVG
(Scalable Vector Graphics)

 QtOpenGL: Classes for integrating OpenGL
(Open Graphics Library) functionality

12. APPLICATION AND SETUP OF PYQT5 LIBRARY
IN BLUR DETECTOR

APPLICATION:

Part of Code: from PyQt5.QtWidgets import
QApplication, QLabel, QMainWindow, QVBoxLayout,
QWidget

Function:
 The ‘QApplication’ manages application wide-

resources and settings
 The ‘QLabel’ displays text or images

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 8

 The ‘QMainWindow’ is the main application
window providing a framework for building a
main user interface

 The ‘QBoxLayout’ is used to arrange widgets
vertically

 The ‘QWidget’ provides the base class for all UI
objects

Part of Code: from PyQt5.QtGui import QImage,
QPixmap

Function:

 The ‘Q_Image’ represents an image in a format
that can be manipulated at the pixel level

 The ‘QPixmap’ is optimized to display images on
the screen

Part of Code: from PyQt5.QtCore import QTimer, Qt

Function:

 The ‘QTimer’ fires timeout signals at specified
intervals, used for repetitive tasks

 The ‘Qt’ contains miscellaneous identifiers used
throughout PyQt5 such as alignment and event
types

SETUP:

Part of Code: class App(QMainWindow):

Function: Defines a new class called ‘App’ that
inherits from the ‘QMainWindow’, which provides a
main application window

Part of Code: def __init__(self):

Function: A constructor method for initializing the
‘App’ class. ‘self’ refers to the instance of
‘QMainWindow’ class representing the main window
of our application

Part of Code: super().__init__()

Function: Calls the constructor of the
‘QMainWindow’ class using the ‘super’ keyword to
ensure proper initialization

Part of Code: self.setWindowTitle("Webcam")

Function: Sets the title of the main window. ‘self’
refers to the instance of ‘QMainWindow’ class
representing the main window of our application

Visual Representation:

Part of Code: self.setGeometry(100, 100,
frame_width, frame_height)

Function:

 Sets the size and position of the window
 The ‘frame_width’ sets the width of the frame
 The ‘frame_height’ sets the height of the frame
 The ‘100, 100’ represents the x-coordinate and

the y-coordinate of the top left corner of the
screen which mean the window will start 100
pixels from the left of the screen and 100 pixels
from the top of the screen

Part of Code: self.central_widget = QWidget(self)

Function:

 Creates a central widget which will contain other
widgets

 ‘self’ refers to the instance of ‘QMainWindow’
class representing the main window of our
application

 In the context of machine learning and the model
of blur detector, a widget refers to an interactive
tool or an interface element

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 9

 A widget aids interactive visualization,
parameter tuning, data exploration, model
comparison and provide a smooth user interface
experience

Part of Code: self.setCentralWidget(self.central_widget)

Function:

 Sets ‘central_widget’ as the central widget for
the main window

 ‘self’ refers to the instance of ‘QMainWindow’
class representing the main window of our
application

 ‘.setCentralWidget’ is a method provided by the
‘QMainWindow’ class to set a central widget for
the main window

 ‘self.central_widget’ is the widget we have set
as the central content of our main window

Part of Code: self.layout = QVBoxLayout(self.central_widget)

Function:

 ‘layout’ is an instance variable that holds the
layout manager for the central widget

 ‘QVBoxLayout’ is a layout manager provided by
PyQt that arranges widgets vertically

 ‘self.central_widget’ is the central widget of the
main window, which we had defined earlier in
our code and the layout manager is being
applied to this widget

Part of Code: self.label = QLabel(self)

Function:

 Used to create a label widget in PyQt
 Labels are commonly used to display text or

images within a graphical user interface
 ‘label’ is the instance variable that holds the

QLabel widget
 ‘QLabel’ is the widget provided by PyQt that can

display text or images
 ‘self’ (inside the QLabel constructor) specifies

that the label widget will be a child of the ‘self’

object which means it will be placed in the main
window or the parent widget specified by ‘self’

Part of Code: self.layout.addWidget(self.label)

Function:

 Adds the ‘label’ to the layout

Part of Code: self.frame_timer = QTimer()

Function:

 ‘frame_timer’ is an instance variable holding the
QTimer object

 ‘QTimer’ is a class provided by PyQt that allows
the user to create a timer object. These timers
emit signals at specified intervals, which can be
used to trigger functions periodically

Part of Code: self.frame_timer.timeout.connect(self.update_frame)

Function:

 ‘frame_timer’ is the QTimer object that was
previously created

 ‘timeout’ is a signal emitted by the QTimer
object when the timer runs out after the
specified intervals elapses

 ‘connect’ is a method used to connect a signal to
a slot (a function or method to be executed when
the signal is emitted)

 ‘self.update_frame’ is the method that will be
called each time the timeout signal is emitted by
the ‘QTimer’

Part of Code: self.frame_timer.start(33)

Function:

 ‘frame_timer’ is the QTimer object previously
created

 ‘start’ is a method of the QTimer class that
starts the timer

 ‘33’ is the argument that specifies the interval in
milliseconds, in this scenario, 33 milliseconds

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 10

Part of Code: self.current_frame = None

Function:

 ‘current_frame’ is an instance variable that will
hold the latest frame from the webcam

 ‘None’ initializes the ‘current_frame’ to ‘None’
indicating that no frame has been captured yet

Part of Code: self.face_position = None

Function:

 ‘face_position’ is an instance variable that will
hold the coordinates or bounding box of the
detected face

 ‘None’ initializes the ‘face_position’ to ‘None’,
indicating that no face has been detected yet

Part of Code: self.blur_text = ""

Function:

 ‘blur_text’ is an instance variable holding text
messages regarding the clarity of the images.
These messages include messages about
whether an image is clear, blurry, or the face
needs to be fully fitted into the frame

 ‘=””’ initializes the ‘blur_text’ with an empty
string. This means, initially, when the code is run,
there is no message stored in ‘blur_text’

13. UPDATE FRAME METHOD

The ‘update_frame’ method captures a frame from
the webcam, processes it to detect faces, and
assesses image clarity. It starts capturing and
copying the frame, then creates an oval mask and
draws an ellipse on the frame. The frame is then
converted to grayscale for face detection using Haar
Cascade classifier. For each detected face, it checks if
the face is within the oval mask, preprocesses the
face region, and calculates the variance of the
Laplacian to determine if the image is blurred. It
updates ‘self.blur_text’ with the result, draws a
bounding box around the detected face, and overlays
the blur status text on the frame. Finally, the frame is

converted to ‘QImage’ and displayed in a label
widget.

Exploring how this works in even more detail:

Part of Code: def update_frame(self)

Function:

 This line defines the method ‘update_frame’ as
part of a class

 It does not take any parameters other than ‘self’,
which refers to the instance of the class

Part of Code: ret, frame = cap.read()

Function:

 ‘ret’ is a boolean value that indicates if a frame
was captured successfully or not. If the frame
was captured correctly, ‘ret’ is set to True and if
the frame was not captured correctly, ‘ret’ is set
to False

 ‘frame’ is a variable that holds the captured
image data. This is typically a NumPy array
containing the pixel values of the image captured
from the webcam

 ‘cap.read()’ is a method provided by OpenCV’s
‘VideoCapture’ class. This method attempts to
capture a frame from the webcam / video
stream associated with the ‘cap’ object

Part of Code: if not ret: return

Function:

 ‘if_not_ret’ condition checks whether the ‘ret’
variable is ‘False’

 If ‘ret’ is False, ‘not_ret’ becomes True
 ‘return’ causes the method to exit immediately,

returning control to the caller without executing
any further code within the method

 Essentially, this is a guard clause which ensures
the method exits early if the frame capture fails,
preventing any further processing of the frame
when there is no valid image data to work with

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 11

Part of Code: self.current_frame = frame.copy()

Function:

 ‘current_frame’ is an instance variable of the
class that will store the copied frame. This
variable is used to retain the current frame’s
data for further processing and display

 ‘frame.copy()’ creates a deep copy of the
‘frame’ array. The ‘frame’ variable contains the
image data captured from the webcam, and
calling ‘copy()’ creates an independent duplicate
of this data

Part of Code: oval_mask =
create_oval_mask(frame.shape, center_coordinates,
axes_length)

Function:

 ‘oval_mask’ is a variable that will store the
binary mask created by the
‘create_oval_function’. This mask is typically a
binary image where the oval area is marked

 ‘create_oval_mask (…..)’ is a function created to
call ‘create_oval_mask’, which is a custom
function designed to generate an oval-shaped
mask

 ‘frame_shape’ is an attribute of the ‘frame’
variable that provides the dimensions of the
captured frame. ‘frame_shape’ returns a tuple
containing the height, width, and number of
color channels of the frame ‘(height, width,
channels)’

 ‘center_coordinates’ is an argument specifying
the center coordinates of the oval to be created.
It is usually a tuple (x,y) indicating the position
of the oval’s center

 ‘axes_length’ is an argument specifying the
lengths of the minor and major axes of the oval.
It is a tuple (major_axis_length,
minor_axis_length)

Part of Code: face_detected = True

Function:

 Sets a flag indicating a face has been detected in
the oval

 ‘face_detected’ is a boolean variable used to
track if a face is detected

Part of Code: face_roi = self.current_frame[y:y + h,
x:x + w]

Function:

 This line of code extracts the region of interest
(ROI) of the face from the current frame

 ‘y:y+h’ represents the range of rows to select
(height of the face)

 ‘x:x+w’ represents the range of columns to
select (width of the face)

Part of Code: face_roi_gray = cv2.cvtColor(face_roi,
cv2.COLOR_BGR2GRAY)

Function:

 The purpose of this line of code is to convert the
face ROI to grayscale

 Cv2.cvtColor is the OpenCV function to convert
an image from BGR format to grayscale

 ‘face_roi’ represents the extracted face region
 ‘cv2.COLOR_BGR2GRAY’ is the conversion code

for BGR to grayscale

Part of Code: laplacian_var =
cv2.Laplacian(face_roi_gray, cv2.CV_64F).var()

Function:

 Calculates the variance of the Laplacian o the
grayscale face ROI to assess the blurriness

 The ‘cv2.Laplacian(…..)’syntax is the OpenCV
syntax to apply the Laplacian filter to detect
edges

 ‘face_roi_gray’ is used to grayscale the image

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 12

 ‘cv2.CV_64F’ specifies the data depth for the
output image

 ‘.var’ computes the variance of the Laplacian-
filtered image

14. CODE LOGIC FOR BLUR / NON-BLUR
DETECTION THROUGH LAPLACIAN VARIANCE

Part of Code: if laplacian_var < 100:
self.blur_text = "Image is blurred"
else:
self.blur_text = "Image is clear"

Function:
 ‘if’ is a condition to check if the following

condition is ‘True’ or ‘False’
 ‘laplacian_var<100’ condition checks if the

variable ‘laplacian_var’ (which represents the
Laplacian variance of the image) is less than 100

 In Laplacian variance, the value of 100 is used to
differentiate between clear and blurry images. If
the value is less than 100, it is considered to be a
blurry image

 If the value of the Laplacian Variance is greater
than 100, it is considered a clear image

 ‘self.blur_text = "Image is blurred"’: Here the
‘blur_text’ is an instance variable of the class
that stores a message about the clarity of the
image; ‘”Image is blurred”’ refers to a string
message indicating that the image is blurred. It
indicates that the image has been detected
blurry based on the current analysis

 ‘else:
self.blur_text = “Image is clear”’: This piece of
code is executed if the image is not considered
blurred i.e. variance is above the threshold;
‘”Image is clear”’ refers to a string message
indicating that the image has been detected clear
based on the current analysis

Part of Code: if not face_detected:
self.blur_text = "Put entire face into frame"

Function:

 The ‘if not’ is a condition here which checks if

the face has been detected or not. It will execute
its block of code only if a face has not been
detected

 The ‘self.blur_text = “Put entire face into
frame”’ indicates a string message indicating
that the entire face is not in the frame and hence
prints out a text message instructing the user to
put his / her entire face into the frame

15. VISUAL REPRESENTATION OF
IDENTIFICATION BETWEEN BLUR / NON-BLUR
LIVE ON THE LOGITECH 720P WEBCAM

CLEAR IMAGE (LAPLACIAN VARIANCE > 100)

BLUR IMAGE (LAPLACIAN VARIANCE < 100)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 13

16. VISUAL REPRESENTATION OF
IDENTIFICATION BETWEEN BLUR / NON-BLUR
WHEN SHOWN A FACE FROM A MOBILE PHONE
ON THE LOGITECH 720P WEBCAM

CLEAR FACE IMAGE (LAPLACIAN VARIANCE > 100)

BLUR FACE IMAGE (LAPLACIAN VARIANCE < 100)

17. CONCLUSIONS

In conclusion, in the realm of digital image
processing, the development of an efficient and
reliable blur detection tool is paramount. This
research explored the creation of a blur detector
using Laplacian variance method, implemented
within the OpenCV framework. Through detailed
experimentation and analysis, the tool demonstrated
its capability to accurately differentiate between

clear and blurred images by analysis variances in
pixel intensities.

The implementation leverages Haar Cascade
classifier for robust face detection and the Laplacian
operator to compute the variance, serving as an
indicator of image sharpness. By setting an
appropriate threshold for the Laplacian variance, the
tool effectively identified blurred regions, facilitating
various applications such as image quality
assessment, automated photography correction, and
real-time video stream enhancement.

The use of PyQt5 for the GUI (Graphical User
Interface) provided a seamless and interactive user
experience, enabling real-time feedback on the image
clarity status. This integration highlights the
importance of combining advanced image processing
techniques with user friendly interfaces create
practical and accessible tools.

Future work in this field can explore the
incorporation of machine learning models to
adaptively adjust thresholds and enhance the
robustness of blur detection mechanism.
Additionally, expanding the tool’s capabilities to
detect and quantify motion blur and defocus blur can
further improve its utility across diverse imaging
applications.

Overall, this research underscores the potential of
the Laplacian variance as a simple yet powerful
metric for blur detection, paving the way for
advancements in automated image quality control
and enhancement technologies.

ACKNOWLEDGEMENT

I would like to acknowledge Prisma AI, a software
company in Mumbai, Maharashtra, since they
provided me with the platform to undertake this
project of a blur detection tool and carry out in-depth
research on the same

REFERENCES

[1] https://ijcatr.com/archives/volume2/issue4/ijcatr02

041019.pdf
[2] https://www.researchgate.net/publication/2727099

06_Blur_Detection_Methods_for_Digital_Images-
A_Survey

[3] https://github.com/topics/blur-detection

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 03 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 14

[4] https://www.grafiati.com/en/literature-
selections/image-blur-detection/

BIOGRAPHIES

 I'm Siddhant Ray, a 16-year-
old student at Jamnabai
Narsee International School.
I’m a technogeek who loves to
code and constantly seeks new
knowledge. My passion for
technology drives me to learn
and innovate, shaping my
journey in the world of
programming and beyond.

